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History

Definition

Let S ⊂ R. We say that x is a density point of S if

lim inf
n<ω

λ(S ∩ Ux ,1/n)

λ(Ux ,1/n)
= 1.

Theorem (Henri Lebesgue (1904))

Let S ⊂ R be Lebesgue-measurable. Then almost all points of
S are density points of X .
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Another definition

Definition

1 Suppose that A is a Borel subset of ω2. Suppose that
x ∈ ω2. Then x is a weak B-density point of A if for
every T ∈ B and s = stemT , there is some n0 such that
for all n ≥ n0,

fx�n ◦ f −1s [T ] ∩ A /∈ I ∗B.

2 Let Dweak
B (A) denote the set of weak B-density points of

A.

3 We say that B has the weak density property if for every
Borel subset A of ω2, A4Dweak

B (A) ∈ I ∗B.
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Another definition

Lemma

Suppose that A is a Borel subset of ω2, where as before B
denotes random forcing.

1 If lim infn µn(x ,A) = 1, then x is a weak B-density point
of A.

2 If lim infn µn(x ,A) = 0, then x is not a weak B-density
point of A.

Corollary

For every Borel subset A of ω2,

DL(A) =I∗B
Dweak
B (A).

In particular, the weak B-density property holds.
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Another definition

Lemma

Let B denote random forcing.

1 There is a Borel subset A of ω2 and an x ∈ A such that
lim infn µn(x ,A) ∈ (0, 1) and x is a weak B-density point
of A.

2 There is a Borel A of ω2 and an x ∈ A such that
lim infn µn(x ,A) ∈ (0, 1) and x is not a weak B-density
point of A.
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Another Direction

Definition (Elżbieta Wagner (1981))

Let I be an ideal on a space X . The sequence 〈fn|n < ω〉 of
functions with domain X converges with respect to I to the
function f with domain X if for every sequence 〈n`|` < ω〉
there is a sequence 〈`i |i < ω〉 such that the sequence
〈f`i |i < ω〉 converges to I -almost everywhere to f on X .
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Another Direction

Observation ([009Wo])

If I is either the meagre sets or the null sets, TFAE:

1 x is an I-density point of an I-regular set A,

2 For any decreasing to zero sequence of real numbers
{tn}n∈ω, there is {nm}m∈ω such that the sequence{
χ(A−x)/tnm∩[1,1]

}
m∈ω of characteristic functions

converges I-almost everywhere on [1, 1] to χ[1,1],

3 Given {tn}n∈ω , a decreasing to zero sequence of real
numbers fulfilling condition supn→∞ tn/tn+1 <∞, for
every {nm}m∈ω there is {mp}p∈ω such that{

χ(A−x)/tnmp∩[−1,1]
}
p∈ω

converges to χ[1,1] I-almost everywhere on [1, 1].
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Another Direction

Definition (Wies lawa Poreda, Elżbieta Wagner-Bojakowska,
W ladys law Wilczyński (1981))

Let I be an ideal on R and A ⊂ R. A real x is an I-density
point of A if 〈χn(A−x)∩[−1,+1]|n < ω〉 converges with respect
to I to the function which has the constant value 1.
A dispersion point of A is a density point of R \ A.

Observation

For all A ⊂ R no real is both a density point and a dispersion
point of A.

Observation

The density theorem holds for the ideal of meagre sets.
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Another Direction

Proposition (Müller, Schlicht, Schrittesser, W. (2018))

There is a T ∈ V such that every x ∈ ω2 is a
(countable)-dispersion point of [T ].

Corollary

The analogue of the Lebesgue Density Theorem fails for many
forcings, for example Silver-forcing, Sacks-forcing and anything
in between, for example E0-forcing or willow-tree forcing.
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Another Direction

Consider the following tree:

T := {t ∈ ω2|∀i < dom(t)(t(i) = 0 ∨ ∃n < i : 2n = i)}.

Now suppose towards a contradiction that there is an x ∈ ω2
which is not a dispersion point for the ideal of countable sets.
This means that that there is an increasing sequence
〈ni |i < ω〉 of natural numbers such that for all increasing
sequences 〈ki |i < ω〉 the set

B := lim sup
i<ω

[T/(x � nki )] is uncountable.

Let 〈ni |i < ω〉 be a sequence as above. In particular this
statement holds simply for the sequence given by ki := i for all
natural numbers i . Let C{i ,j} := [T/(x � ni )] ∩ [T/(x � nj )]

for {i , j} ∈ [ω]2.
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Another Direction

We have

B ⊂
⋃

{i ,j}∈[ω]2
C{i ,j}.

By the pigeonhole principle there has to be {i , j} ∈ [ω]2 such
that C{i ,j} is uncountable. Suppose without loss of generality
that i < j . In particular C{i ,j} has to contain at least three
elements, call them a, b, c . Recall that for finite sequences x
and y we let x ∧ y denote the longest common initial segment.
Then {a ∧ b, a ∧ c , b ∧ c} is a pair {s, t} such that, without
loss of generality, s ( t. Both s and t are splitting nodes in
both T/(x � ni ) and T/(x � nj ). Let k0 := lh(s) and
k1 := lh(t).
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Another Direction

There are natural numbers ki for i ∈ 6 \ 2 such that

ni + k0 = 2k2 ,

nj + k0 = 2k3 ,

ni + k1 = 2k4 ,

nj + k1 = 2k5 .

Therefore nj − ni = 2k3 − 2k2 = 2k5 − 2k4 , i.e.

2k3 + 2k4 = 2k2 + 2k5 . As every natural number has a unique
represenation in the binary system this implies
(k2 = k3 ∧ k4 = k5) ∨ (k2 = k4 ∧ k3 = k5). As i < j we have
ni < nj and therefore k2 6= k3. Therefore (k2 = k4 ∧ k3 = k5)
and hence k0 = k1, a contradiction.
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Another Direction

Question

Are there weak density points whose density exists, yet is less
than 1?

Question

Is there a Borel set A ⊂ ω2 such that DP
tr(A) fails to be

disjoint from DP
tr(

ω2 \ A)
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Another Direction

Question

With Ax := {y ∈ R | 〈x , y〉 ∈ A}, does the Lebesgue density
theorem hold for any of the ideals

{A ⊂ R2 | {x ∈ R | Ax is not meagre.} is null.},
{A ⊂ R2 | {x ∈ R | Ax is not null.} is meagre.}?

Question

How can one generalise the Lebesgue density theorem to
non-separable spaces?
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Gratitude

Thank you for your attention!
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