Thoughts on Density Points 03E20, 28A05

Thilo Weinert

Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Austria Joint work with Sandra Müller, Philipp Schlicht and David Schrittesser

46th Winterschool, Hejnice, Monday, 29th of January 2018, 16:00–16:20

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Definition

Let $S \subset \mathbb{R}$. We say that x is a density point of S if

$$\liminf_{n<\omega}\frac{\lambda(S\cap U_{x,1/n})}{\lambda(U_{x,1/n})}=1.$$

Theorem (Henri Lebesgue (1904))

Let $S \subset \mathbb{R}$ be Lebesgue-measurable. Then almost all points of S are density points of X.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Definition

• Suppose that A is a Borel subset of ${}^{\omega}2$. Suppose that $x \in {}^{\omega}2$. Then x is a *weak* \mathbb{B} -density point of A if for every $T \in \mathbb{B}$ and $s = \operatorname{stem}_T$, there is some n_0 such that for all $n \ge n_0$,

$$f_{x \upharpoonright n} \circ f_s^{-1}[T] \cap A \notin I_{\mathbb{B}}^*.$$

- 2 Let D^{weak}_B(A) denote the set of weak B-density points of A.
- **③** We say that \mathbb{B} has the *weak density property* if for every Borel subset *A* of ^{*ω*}2, *A*△ $D_{\mathbb{R}}^{\text{weak}}(A) \in I_{\mathbb{R}}^*$.

Lemma

Suppose that A is a Borel subset of ${}^{\omega}2$, where as before $\mathbb B$ denotes random forcing.

- If $\liminf_{n \to \infty} \mu_n(x, A) = 1$, then x is a weak \mathbb{B} -density point of A.
- 2 If $\liminf_{n \neq n} \mu_n(x, A) = 0$, then x is not a weak \mathbb{B} -density point of A.

Corollary

For every Borel subset A of ${}^{\omega}2$,

$$D_L(A) =_{I^*_{\mathbb{B}}} D^{\text{weak}}_{\mathbb{B}}(A).$$

- 日本 - 4 日本 - 4 日本 - 4 日本

Sac

In particular, the weak \mathbb{B} -density property holds.

Lemma

Let \mathbb{B} denote random forcing.

- There is a Borel subset A of ${}^{\omega}2$ and an $x \in A$ such that $\liminf_{n \neq n} \mu_n(x, A) \in (0, 1)$ and x is a weak \mathbb{B} -density point of A.
- **2** There is a Borel A of ${}^{\omega}2$ and an $x \in A$ such that $\liminf_{n \neq n} (x, A) \in (0, 1)$ and x is not a weak \mathbb{B} -density point of A.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Definition (Elżbieta Wagner (1981))

Let \mathcal{I} be an ideal on a space X. The sequence $\langle f_n | n < \omega \rangle$ of functions with domain X converges with respect to I to the function f with domain X if for every sequence $\langle n_\ell | \ell < \omega \rangle$ there is a sequence $\langle \ell_i | i < \omega \rangle$ such that the sequence $\langle f_{\ell_i} | i < \omega \rangle$ converges to I-almost everywhere to f on X.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Observation ([009Wo])

If \mathcal{I} is either the meagre sets or the null sets, TFAE:

- $\bullet x is an I-density point of an I-regular set A,$
- ② For any decreasing to zero sequence of real numbers $\{t_n\}_{n \in \omega}$, there is $\{n_m\}_{m \in \omega}$ such that the sequence $\{\chi_{(A-x)/t_{nm}\cap[1,1]}\}_{m \in \omega}$ of characteristic functions converges *I*-almost everywhere on [1, 1] to $\chi_{[1,1]}$,
- **3** Given $\{t_n\}_{n \in \omega}$, a decreasing to zero sequence of real numbers fulfilling condition $\sup_{n \to \infty} t_n/t_{n+1} < \infty$, for every $\{n_m\}_{m \in \omega}$ there is $\{m_p\}_{p \in \omega}$ such that

$$\{\chi_{(A-x)/t_{nm_p}\cap[-1,1]}\}_{p\in\omega}$$

converges to $\chi_{[1,1]}$ *I*-almost everywhere on [1,1].

Definition (Wiesława Poreda, Elżbieta Wagner-Bojakowska, Władysław Wilczyński (1981))

Let \mathcal{I} be an ideal on \mathbb{R} and $A \subset \mathbb{R}$. A real x is an \mathcal{I} -density point of A if $\langle \chi_{n(A-x)\cap [-1,+1]} | n < \omega \rangle$ converges with respect to \mathcal{I} to the function which has the constant value 1. A dispersion point of A is a density point of $\mathbb{R} \setminus A$.

Observation

For all $A \subset \mathbb{R}$ no real is both a density point and a dispersion point of A.

Observation

The density theorem holds for the ideal of meagre sets.

Proposition (Müller, Schlicht, Schrittesser, W. (2018))

There is a $T \in \mathbb{V}$ such that every $x \in {}^{\omega}2$ is a (countable)-dispersion point of [T].

Corollary

The analogue of the Lebesgue Density Theorem fails for many forcings, for example Silver-forcing, Sacks-forcing and anything in between, for example E_0 -forcing or willow-tree forcing.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

Consider the following tree:

$$T := \{t \in {}^{\omega}2 | \forall i < \operatorname{dom}(t)(t(i) = 0 \lor \exists n < i : 2^n = i)\}.$$

Now suppose towards a contradiction that there is an $x \in {}^{\omega}2$ which is not a dispersion point for the ideal of countable sets. This means that that there is an increasing sequence $\langle n_i | i < \omega \rangle$ of natural numbers such that for all increasing sequences $\langle k_i | i < \omega \rangle$ the set

$$B := \limsup_{i < \omega} [T/(x \upharpoonright n_{k_i})] \text{ is uncountable.}$$

Let $\langle n_i | i < \omega \rangle$ be a sequence as above. In particular this statement holds simply for the sequence given by $k_i := i$ for all natural numbers *i*. Let $C_{\{i,j\}} := [T/(x \upharpoonright n_i)] \cap [T/(x \upharpoonright n_j)]$ for $\{i,j\} \in [\omega]^2$. We have

$$B \subset \bigcup_{\{i,j\}\in[\omega]^2} C_{\{i,j\}}.$$

By the pigeonhole principle there has to be $\{i, j\} \in [\omega]^2$ such that $C_{\{i,j\}}$ is uncountable. Suppose without loss of generality that i < j. In particular $C_{\{i,j\}}$ has to contain at least three elements, call them a, b, c. Recall that for finite sequences x and y we let $x \land y$ denote the longest common initial segment. Then $\{a \land b, a \land c, b \land c\}$ is a pair $\{s, t\}$ such that, without loss of generality, $s \subsetneq t$. Both s and t are splitting nodes in both $T/(x \upharpoonright n_i)$ and $T/(x \upharpoonright n_j)$. Let $k_0 := \ln(s)$ and $k_1 := \ln(t)$.

There are natural numbers k_i for $i \in 6 \setminus 2$ such that

$$n_i + k_0 = 2^{k_2},$$

$$n_j + k_0 = 2^{k_3},$$

$$n_i + k_1 = 2^{k_4},$$

$$n_j + k_1 = 2^{k_5}.$$

Therefore $n_j - n_i = 2^{k_3} - 2^{k_2} = 2^{k_5} - 2^{k_4}$, i.e. $2^{k_3} + 2^{k_4} = 2^{k_2} + 2^{k_5}$. As every natural number has a unique represenation in the binary system this implies $(k_2 = k_3 \land k_4 = k_5) \lor (k_2 = k_4 \land k_3 = k_5)$. As i < j we have $n_i < n_j$ and therefore $k_2 \neq k_3$. Therefore $(k_2 = k_4 \land k_3 = k_5)$ and hence $k_0 = k_1$, a contradiction.

Question

Are there weak density points whose density exists, yet is less than 1?

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● ● ● ●

Question

Is there a Borel set $A \subset {}^{\omega}2$ such that $D_{\mathrm{tr}}^{\mathbb{P}}(A)$ fails to be disjoint from $D_{\mathrm{tr}}^{\mathbb{P}}({}^{\omega}2 \setminus A)$

Question

With $A_x := \{y \in \mathbb{R} \mid \langle x, y \rangle \in A\}$, does the Lebesgue density theorem hold for any of the ideals

$$\{A \subset \mathbb{R}^2 \mid \{x \in \mathbb{R} \mid A_x \text{ is not meagre.}\} \text{ is null.}\},\\ \{A \subset \mathbb{R}^2 \mid \{x \in \mathbb{R} \mid A_x \text{ is not null.}\} \text{ is meagre.}\}?$$

Question

How can one generalise the Lebesgue density theorem to non-separable spaces?

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Thank you for your attention!

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Sy David Friedman, Yurii Khomskii and Vadim Kulikov. Regularity properties on the generalized reals. Ann. Pure Appl. Logic, 167(4):408–430, 2016.

Daisuke Ikegami.

Forcing absoluteness and regularity properties. Ann. Pure Appl. Logic, 161(7):879–894, 2010.

Wojciech Wojdowski.

A category analogue of the generalization of Lebesgue density topology. Tatra Mt. Math. Publ., 42:11–25, 2009, https://doi.org/10.2478/v10127-009-0002-0.

Wiesława Poreda, Elżbieta Wagner-Bojakowska and Władysław Wilczyński.

A category analogue of the density topology. Fund. Math., 125(2):167-173, 1985, https://doi.org/10.4064/fm-125-2-167-173.

Wiesława Poreda, Elźbieta Wagner-Bojakowska and Władysław Wilczyński. Remarks on I-density and I-approximately continuous functions. Comment. Math. Univ. Carolin., 26(3):553–563, 1985.

Elżbieta Wagner.

Sequences of measurable functions.

Fund. Math., 112(2):89-102, 1981, https://doi.org/10.4064/fm-112-2-89-102.

・ロト ・ 理ト ・ ヨト ・ ヨト

Э

Sac

Henri Lebesgue.

Sur l'intégration des fonctions discontinues. Ann. Sci. École Norm. Sup. (3), 27:361-450, 1910, http://www.numdam.org/item?id=ASENS_1910_3_27__361_0.